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Recent experiments showed a decrease of long range correlations during the application of resonant
magnetic perturbations (RMPs) [Y. Xu et al., Nucl. Fusion 51, 063020 (2011)]. This finding suggests
that RMPs damp zonal flows. To elucidate the effect of the RMPs on zonal structures in drift wave
turbulence, we construct a generalized Hasegawa-Wakatani model including RMP fields. The effect
of the RMPs is to induce a linear coupling between the zonal electric field and the zonal density
gradient, which drives the system to a state of electron radial force balance for large RMP amplitude.
A predator-prey model coupling the primary drift wave dynamics to the zonal modes evolution is
derived. This model has both turbulence drive and RMP amplitude as control parameters and predicts
a novel type of transport bifurcation in the presence of RMPs. The novel regime has a power
threshold which increases with RMP amplitude as cc ! dBr

B

! "2
. VC 2011 American Institute of

Physics. [doi:10.1063/1.3610547]

I. INTRODUCTION

The H-mode regime is the targeted operating regime for
ITER. It is characterized by a transport barrier at the plasma
edge. However, edge localized modes (ELMs) threaten the
lifespan of the device wall and divertor plates, imposing an
excessive heat load on the plasma-facing components.

Several experiments show suppression or mitigation of
ELMs using resonant magnetic perturbations (RMPs).1–5

RMPs are static magnetic perturbations of the equilibrium
magnetic field, produced by a set of external coils. The sup-
pression of ELMs has a resonant character and the applica-
tion of RMPs induces a collapse of the density pedestal,
termed “density pump-out.”

Although experiments are successful in mitigating ELMs,
the mechanism leading to this mitigation is yet poorly under-
stood. Global 3D numerical simulations of resistive balloon-
ing mode (RBM) show that RMPs stabilize relaxation
oscillations of a transport barrier, which have characteristics
similar to type-III ELMs (Refs. 6 and 7). Recently, experi-
ments in L-mode indicate that zonal flows (ZFs) are damped
during RMP activation.8 This paper aims at providing a quali-
tative description of the role of RMPs in the zonal flow damp-
ing and to give an insight into a quantitative description of
this effect by, for example, scaling laws. Aspects of this work
are still ongoing. RMP effects on shear flows were previously
investigated numerically and analytically, in the framework of
the RBM turbulence model.9 In presence of RMPs, the flux-
surface averaged equations had two RMP-related terms, a lin-
ear zonal flow damping term AdB and a magnetic-flutter diffu-
sive heat flux QdB.

In the framework of a drift wave (DW) turbulence
model in presence of RMPs, we show that while similar
terms are present, additional effects appear. In contrast to the
RBM model, these terms linearly couple the evolution of
zonal density and zonal potential, globally referred to as

zonal modes (ZMs), through the generalized Ohm’s law. The
physical mechanism is the following: without RMPs, on
mesoscales, the perpendicular dynamics decouple from the
parallel dynamics: zonal flows (e.g., polarization electric
fields) are spontaneously generated, through the Reynolds
stress, so as to ensure ambipolarity (i.e., charge balance) on
mesoscales. Their growth is limited only by neoclassical
drag. In presence of RMPs, on mesoscales, the perpendicular
dynamics does not decouple from the parallel dynamics, due
to the radial scattering of electrons along perturbed magnetic
field lines. We define zonal modes as m¼ 0, n¼ 0 long-range
correlated fluctuations of potential and density. Long-range
correlated fluctuations of potential, also known as zonal
flows, are routinely observed in fusion devices.10 Although
m¼ 0, n¼ 0 long-rang correlated fluctuations in the density
have not been observed in tokamaks, experiments on a small
stellarator showed that such long-range correlations in den-
sity coexisted, and were approximately in-phase with zonal
flows.11 The essential physics of zonal flows is rooted in
electric field generation due to ambipolarity breaking. In par-
ticular, the net (integrated) vorticity “charge” Q in an annu-
lus—equivalent to the mean zonal shear on the scale of the
region’s thickness evolves according to

dQ

dt
¼ #

ð
dAh~vx~qpolij

r2
r1; (1)

where ~qpol ! q2r2
?/ is the polarization charge density.

Thus, the effective shear is determined by the flux of polar-
ization charge. However, h~vx~qpoli is just the Reynolds
force, so the link between ambipolarity and zonal flows is
evident. As we will demonstrate, introducing a radial RMP
field creates a second channel for ambipolarity breaking
via radial electron current flow along Bradial. Stochasticity
of the magnetic field is not essential. The upshot is that
with RMPs,
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dQ

dt
¼ #

ð
dA h~vx~qpoli þ

dBr

B0

$ %2

Dk
@

@x
ðh/i # hniÞ

" #

jr2r1;

(2)
where the brackets refer to zonal averages, Dk ¼

v2th
!ei
. Thus,

flux of polarization charge and radial electron flow can now
compete, so the ambipolarity is substantially altered. The bot-
tom line of this radial electron current is a coupled evolution
of zonal potential uh i and zonal density nh i described by

@

@t
hni ¼ # @

@x
h~vx~ni þ DRMP

@2

@x2
ðhni # h/iÞ; (3)

q2s
@

@t
þ l

$ %
@2

@x2
h/i ¼ #q2s

@

@x
h~vxr? ~/i

þ DRMP
@2

@x2
ðhni # h/iÞ: (4)

This is the fundamental dynamical system describing zonal
mode evolution with RMP. Here, DRMP ¼ Dk dBx=B0ð Þ2.
This paper is devoted to the derivation and analysis of this
system. The analysis proceeds by a modulational stability
analysis and the derivation of an evolution equation for the
drift wave turbulence intensity via wave kinetics. A variety
of simplifications are used to condense these to a dynamical
systems model, namely an extension of the familiar preda-
tor-prey equations, now extensively modified by RMP cou-
pling. That model is then analysed in detail.

The remainder of this paper is organized as follows.
Section II presents the model and the basic physics and for-
mulates and executes the modulational stability analysis for
zonal modes. Section III formulates and implements the
reduced dynamical system predator-prey model, analyzes the
system with the RMP, determines the new fixed points, and
discusses their transitions and stability. Section IV summa-
rizes the results and presents a final discussion.

II. MODEL

In presence of RMPs, the Hasegawa-Wakatani equa-
tions, describing drift-wave turbulence can be generalized to

@n

@t
þ f/; ng ¼ #r2

kðn# /Þ; (5)

q2s
@r2

?/
@t

þ f/; q2sr
2
?/g ¼ #r2

kðn# /Þ; (6)

where the parallel gradient rk includes the effect of RMP
magnetic perturbations

rk ¼ rk0 þ ~rk: (7)

Here, the parallel gradient perturbation is given (in the vac-
uum approximation) by

~rk ¼ f ~wvac; 'g; (8)

~wvac denotes the magnetic flux generated by the RMP-pro-
ducing coils. In the following, we use the notation ~w ¼ ~wvac.

Upon flux-surface averaging, Eqs. (5) and (6) yield

@

@t
hni þ @

@x
h~vx~ni ¼ Dkhrk0 ~rkðn# /Þ

þ ~rkrk0ðn# /Þi þ Dkh ~rk ~rkðn# /Þi; (9)

q2s
@

@t
r2

?h/i þ lq2sr
2
?h/i þ q2s

@

@x
h~vxr2

?
~/i

¼ Dkhrk0 ~rkðn# /Þ þ ~rkrk0ðn# /Þi
þ Dk

&
~rk ~rkðn# /Þ

'
: (10)

The flux-surface average is defined as …h i ¼
ÐÐ
…dydz,

where y and z denote, respectively, the poloidal and toroidal
directions of a fusion device. We have added a collisional
drag l due to represent neoclassical flow-friction, given by

l ! !(

1þ ð!(Þ2
; (11)

with !* the collisionality.
To study secondary mesoscale zonal mode dynamics,

we focus on the quadratic term of the particle and momen-
tum magnetic-flutter fluxes, and can drop the terms involving
rk0, so that Eqs. (9) and (10) reduce to

@

@t
hni þ @

@x
h~vx~ni ¼ Dk ky

2 ~w
@

@x
~w
@

@x
ðn# /Þ

$ %) *
; (12)

q2s
@

@t
þ l

$ %
@2

@x2
h/i þ q2s

@2

@x2
h~vxr2

?
~/i

¼ Dk ky
2 ~w

@

@x
~w
@

@x
ðn# /Þ

$ %) *
: (13)

As usual, poloidal and toroidal symmetries of the zonal
modes are assumed a priori. The quantities h~vx~ni and
h~vxr2

?
~/i are, respectively, the (convective) particle flux and

vorticity flux, where the latter is linked to the Reynolds stress
via the Taylor identity

h~vxr2
?
~/i ¼ @

@x
h~vx~vyi: (14)

Assuming the zonal perturbations of density and potential to
be slowly varying in space, averaging of small (micro) scales
gives

@

@t
hni ¼ # @

@x
h~vx~ni þ DRMP

@2

@x2
ðhni # h/iÞ; (15)

q2s
@

@t
þ l

$ %
@2

@x2
h/i ¼ #q2s

@

@x
h~vxr2

?
~/i

þ DRMP
@2

@x2
ðhni # h/iÞ: (16)

Here, the coupling parameter DRMP is given by

DRMP ¼ Dk
X

k

ky
2jwkj

2: (17)

Note that DRMP ¼ Dk
&
ðdBx
B Þ2

'
’ vk

&
ðdBx

B Þ2
'
is very close to

the effective cross-field heat conductivity induced by the
external RMP fields. Equations (15) and (16) state that the
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RMP linearly couples the zonal density and zonal potential
evolution (n.b. recall zonal potential is the zonal flow stream
function), in contrast to the familiar DRMP ! 0 limit, in
which the coupling is only implicit (i.e., nonlinear).
Equations (15) and (16) have two characteristic time-scales,

namely c#1
ZF and

+
DRMP
q2s

,#1
. Here, c#1

ZF is a typical zonal flow

time scale in the absence of the RMP, i.e., the inverse of a

modulational growth-rate cZF ¼ cZFðh~v2iÞ, and
+
DRMP
q2s

,#1
is a

characteristic diffusion time along the perturbed field lines.
Hence, zonal mode dynamics varies depending on

aZF ¼ DRMP
cZFq2s

, much like collisional drift wave dynamics bifur-

cates into distinct regimes for different values of
k2kDk

x . This
analogy is developed further in Table I. Clearly, for
aZF ) 1, the zonal flow is determined as usual by the com-
petition between Reynolds force and frictional damping,
while for aZF * 1, the zonal modes tend toward a state with
nh i ’ uh i, which corresponds to electron radial force
balance.

In fact, in the strong-RMP limit aZF !þ1, adiabatic-
ity is restored on mesoscales: nh i ¼ uh i and an equation
similar to the Hasegawa-Mima equation is obtained

@

@t
#q2s

@2h/i
@x2

þ h/i
$ %

þ @

@x
h~vx~ni

¼ q2s
@

@x
h~vxr2

?
~/i þ lq2s

@2h/i
@x2

: (18)

This equation states that the zonal potential vorticity is con-
served, up to dissipation (neoclassical friction l), and nonlin-
ear energy transfers from particle and vorticity flux. Note thatÐ
dx ðh/i # q2s

@2

@x2h/iÞ—the radially integrated potential vor-

ticity is conserved up to dissipation and boundary terms.
One clear consequence of the uh i, nh i coupling induced

by DRMP is that the zonal flow will be damped by particle
transport. A physical perspective on the dynamics of the zonal
mode system for RMP may be gained by considering local
ambipolarity breaking or equivalently the dynamics of total
polarization charge Q. In the absence of RMP and other
magnetic fluctuations, it is straightforward to show that the
volume-integrated vorticity Q in an annulus of surface

area A and thickness l? (n.b. l? corresponds to x), evolves
according to

dQ

dt
¼ #

ð
dAdl?

@

@l?
h~vx~rpoli; (19)

where ~rpol ¼ r2
?
~/ is the volume polarization charge density.

Thus,

dQ

dt
¼ #

ð
dA h~vx~rpolijl2l1 (20)

is simply the net change in polarization charge content in a
given region l1 + r + l2 due to the flux of vorticity thru that
region. Thus, the mean zonal shear on the scale Dl¼ l2 – l1 is
determined by the competition between the differential flux
of polarization charge and the decay of net polarization
charge, equivalent to zonal flow damping. With magnetic
fluctuations, either external or spontaneous, a second mecha-
nism of local ambipolarity breakdown is possible via the
flow of current (i.e., electrons) along radially tilted field
lines. In that case,

dQ

dt
¼ #

ð
dA ½h~vx~rpoli # hBxjki-l2l1 : (21)

The two terms have opposite signs, since Q is an ion polar-
ization charge while jk is carried by electrons. With RMP,

hBxjki ¼ hBrihjki þ h ~Bx~|ki: (22)

Here, ~Bx and ~|k correspond to the usual electromagnetic fluc-
tuations (i.e., with high frequency time variation), while Bxh i
refers to the static radial RMP field and jk

& '
is the radial

electron current along the tilted RMP field. This radial cur-
rent exhibits structure on mesoscales. Since

jk ¼ # 1

g
rkð/# nÞ; (23)

then

hjki ¼ # 1

g
hBxi
B0

@

@x

+
h/i # hni

,
; (24)

Since,

rk ¼
@

@z
þ B

B0
' r?: (25)

Thus, we see that

dQ

dt
¼#

ð
dA h~vx~rpoliþ

hBxi
B0

$ %2

Dk
@

@x
ðh/i#hniÞ#h ~Bx~|ki

" #l2

l1

¼#
ð
dA h~vx~rpoli#h ~Bx~|kiþDRMP

@

@x
ðh/i#hniÞ

- .l2

l1

:

(26)

Note that for ~Bx, ~|k ! 0 (i.e., electrostatic turbulence), this
in essence recovers Eq. (16), while for DRMP ! 0, we have
(without assumption regarding Ohm’s law)

TABLE I. Analogy between the linear Hasegawa-Wakatani model and

zonal modes with RMPs.

Linear H-W

model

Zonal modes with

RMPs [Eqs. (33) and (34)]

Coupling parameter Dkk
2
k0

xk

DRMPq#2
s

cq

Strong coupling
Dkk

2
k0

xk
* 1

DRMPq#2
s

cq * 1

adiabatic electrons

drift waves
electron force

balance hEri ~#
@

@r
hni1

Weak coupling
Dkk

2
k0

xk
) 1

DRMPq#2
s

cq
) 1

fluid electrons modified zonal flows

convective cell modes
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dQ

dt
¼ #

ð
dA ½h~vx~rpoli # h ~Bx~|ki-l2l1 : (27)

In this case, the Taylor identity can be applied to both fluxes
to obtain

dQ

dt
¼ #

ð
dA

@

@l?
½h~vx~vyi # h ~Bx

~Byi-l2l1 ; (28)

so the net change in charge content is just the net Reyn-
olds force differential and the Maxwell force differential
across the layer. For Alfven waves or “Alfvenized” turbu-
lence, dQ

dt vanishes. A corresponding approach may be
used to derive an expression for the total particle content
of the layer, which is equivalent to Eq. (15). Thus, we
see that the principal effect of the RMP on zonal modes-
especially zonal flows- is to introduce a second mecha-
nism for (local) ambipolarity breaking which can compete
against the familiar one of flux of polarization charge.
This second mechanism necessarily couples a standard
Ohm law for electrostatic drift waves with zonal potential
and density perturbations.

Now, we face the nettlesome problem of actually calcu-
lating something. To this end, we consider the modulational
stability of a zonal potential (i.e., flow) and density perturba-
tion in a background of ambient drift wave turbulence. As
usual, the zonal modes have radial wave number q and
frequency Xq while the drift waves have wave vector k and
frequency xk, with q )j jkj j and Xq ) xk. The calculation
employs standard procedures, as described in Ref. 10.

Exploiting the scale separation, we introduce modula-
tions (denoted by a “d”) of the particle flux and Reynolds
stress as

dC

dP

 !

¼

dC
dhni

dC
dh/i

dP
dhni

dP
dh/i

0

BBB@

1

CCCA

hni

h/i

 !

; (29)

with the notation C ¼ h~vx~ni, P ¼ h~vx~vyi.
Applying a Fourier transform with radial wavenumber

q, the system can be cast into matrix form

Mq
d

dt

dnq
d/q

$ %
þ Aq

dnq
d/q

$ %
¼ 0; (30)

where the matrix Aq is given by

Aq ¼
iq

dC
dnq

þDRMPq
2 iq

dC
d/q

#DRMPq
2

q2q2s
dP
dnq

#DRMPq
2 q2q2s

dP
d/q

þDRMPq
2 þ lq2q2s

0

BBB@

1

CCCA:

(31)

The mass matrix Mq is

Mq ¼
1 0
0 q2q2s

$ %
: (32)

A. Linear dynamics

First, without considering the effects of particle flux and
Reynolds stress, the dynamics of the system (30) corre-
sponds to that of asymmetrically-coupled dampers [Fig. 1]

d

dt
dnq ¼ #ldBq

2q2s ðdnq # d/qÞ; (33)

# q2q2s
d

dt
þ l

$ %
d/q ¼ #ldBq

2q2s ðdnq # d/qÞ; (34)

where we define the coupling parameter ldB as

ldB ¼ DRMP

q2s cZF
¼

Dk

q2scZF

X

k

ky
2jwkj

2: (35)

Note that an estimate of the coupling parameter can be
obtained using the linewidth of ZF modulations Dx

ldB ! DRMP

q2sDx
: (36)

The asymmetry in the coupling, clearly visible on Fig. 1,
stems from the fact that zonal potential is collisionally
damped due to neoclassical friction l, whereas zonal density
is not. Note, however, that zonal density is non-linearly
damped due to turbulent particle diffusivity, but this is out-
side the linear analysis.

An analogy can be made between the structure of Eqs.
(33) and (34) and that of the equations for linear drift-waves

[Table I]. Particularly, the strong-RMP limit
cqq

2
s

DRMP
! 0 is sim-

ilar to the adiabatic regime xk

Dkk
2
k0
! 0 of the linear drift-waves.

There are two differences between Eqs. (33) and (34) and linear
drift waves: the first difference is the presence of neoclassical
friction l and the second one is the absence of a real frequency.
However, these differences do not kill the analogy.

The linear analysis yields two branches, a weakly-
damped branch (þ) and a strongly-damped branch (#), with
damping rates given by

cq
6
0
¼ # 1

2
ðlþ ldB

þ q2q2sldBÞ6
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ ldB # q2q2sldBÞ

2 þ 4q2q2sl
2
dB

q
:

(37)

In the weak-coupling limit ldB
l ) 1, expression (37) simpli-

fies to

FIG. 1. Analogy between zonal modes linear dynamics and coupled
dampers.
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cq
þ
0
! #ldB

l
q2q2slþ l2dB

l2
q2q2sl; for

ldB
l

) 1; (38)

cq
#
0
! # 1þ ldB

l

$ %
l# l2dB

l2
q2q2sl; for

ldB
l

) 1: (39)

From the limiting expressions (38) and (39), we see that the
(þ) branch corresponds to the zonal density branch, while
the (#) branch corresponds to the zonal potential branch.

B. Modulation of particle flux and Reynolds stress by
zonal modes

We now consider weakly non-adiabatic drift-waves,
which can be linearly unstable. Neglecting direct RMP effect
on the drift-waves, the density perturbation can be expressed
in terms of the potential perturbation

nk ¼ ð1# ihÞ/k; with h ¼ x?

Dkk2k0
) 1; (40)

where h denotes the adiabaticity parameter and kk0 the
unperturbed parallel wave-number. Therefore, for weakly
non-adiabatic drift waves, the particle flux and Reynolds
stress are given by

C ¼
X

k

h ky"; (41)

P ¼
X

k

kxky"; (42)

with " ¼ ukj j2 the turbulence intensity. The modulation of
the particle flux and Reynolds stress by zonal density and by
zonal potential (e.g., by zonal flows) are then given by

dC
dnq

¼
X

k

1

2
hvg

dX
dnq

; (43)

dC
d/q

¼
X

k

1

2
hvg

dX
d/q

; (44)

dP
dnq

¼
X

k

1

2
vg

dX
dnq

; (45)

dP
d/q

¼
X

k

1

2
vg

dX
d/q

; (46)

where the radial group velocity vg of drift waves and the
potential enstrophy density X are given by

vg ¼ #
2kxkyq2s

ð1þ k2?q2s Þ
2
v(; (47)

X ¼ ð1þ k2?q
2
s Þ

2": (48)

Here, we are exploiting the fact that the wave action density
given by

N ¼ "

xk
/ X; (49)

for drift waves, is an adiabatic invariant and hence, con-
served for mesoscale modulations.

This allows us to use the wave kinetic formalism to cal-
culate the modulations dX

d/q
.

The coupled evolution equations of zonal density and
zonal potential, Eqs. (15) and (16), are now given by

d

dt
dnq þDTq

2dnq þ iq
X

k

h
ky

2

ð1þ k2?q2s Þ
2

. dX
dnq

dnq þ
dX
d/q

d/q

 !
þ q2DRMPðdnq # d/qÞ ¼ 0; (50)

q2q2s
d

dt
d/xDopp

þ q2q2sld/qþ q2q2s
X

k

kxky
2

ð1þ k2?q2s Þ
2

. dX
dnq

dnqþ
dX
d/q

d/q

 !

# q2DRMPðdnq# d/qÞ ¼ 0; (51)

where DT ! " denotes the turbulent particle diffusivity.
Here, we use the fact that the modulation of DT is weak com-
pared to DT, due to considerations of spectral symmetry.

The wave kinetic equation (WKE) for the response of
the wave population density to the total refractive modula-
tions reads12,13

@

@t
dN þ vg

@

@x
dN þ jckjdN ¼ @

@x
ðxk þ xDoppÞ

@

@kx
hXi;

(52)

where |ck| models relaxation effects, and the drift-wave fre-
quency xk and Doppler frequency xDopp are given by

xk ¼
kyv(e

1þ k2?q2s
; (53)

xDopp ¼ kyvE.B: (54)

The underlying physics is that these two frequencies are
modulated radially on mesoscales, and so induce a refraction
of the linear drift waves, expressed on the r.h.s. of Eq. (52).
The electron diamagnetic drift is perturbed by the zonal
density

v(e ¼ v(e0 þ dv(e: (55)

Noting that dN is proportional to dX, we then have

@

@t
dXþ vg

@

@x
dXþ jckjdX

¼ ky
1

1þ k2?q2s

@

@x
dv(e þ

@

@x
dvE.B

$ %
@

@kx
hXi: (56)

We observe that in addition to the usual zonal E.B shear,
there is a shear in the electron diamagnetic zonal flow. This
diamagnetic flow shear is calculated as

@

@x
dv(e ¼ # @2

@x2
dn: (57)
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The zonal E.B shear is, as usual

@

@x
vE.B ¼ @2

@x2
d/: (58)

The coupled system of Eqs. (50) and (51) finally becomes

d

dt
dnq þ DTq

2dnq þ ibqðd/q # ð1# cÞdnqÞ

# DRMPq
2ðd/q # dnqÞ ¼ 0; (59)

d

dt
d/q þ ld/q # aqðd/q # ð1# cÞdnqÞ

þ DRMP

q2s
ðd/q # dnqÞ ¼ 0: (60)

Here, the coefficients aq, bq, and c are

aq ¼ #q2
X

k

kxky
2

ð1þ k2?q2s Þ
2
Rq

@hXi
@kx

/ 0; (61)

bq ¼ aq
X

k

h
q

kx
; (62)

c ¼
X

k

k2?q
2
s

1þ k2?q2s
; (63)

where the resonance function Rq is defined by

Rq ¼
jckj

q2v2g þ jckj
2
! s; (64)

with s as the spectral response correlation time.
It is straightforward to show that the coupled evolution

of zonal density and zonal potential Eqs. (59) and (60) has a
zonal frequency, in addition to the zonal growth rate. The
analogy with linear drift waves given in the linear analysis
[Table I] can be pushed further, in a quasilinear analysis: as
the real frequency of linear drift waves entails their propaga-
tion, both poloidally and radially, the real frequency of zonal
modes, i.e., “zonal waves,” entails their radial propagation.
This is familiar from the case of geodesic acoustic modes
which are zonal shear layers which propagate radially on
account of their finite frequency and polarization effects.
From Eqs. (30) and (31), we see that the real frequency, and
hence radial propagation, stems from the particle flux
modulation.

In the following, we neglect the radial propagation of
zonal modes, since our main goal here is to describe the local
dynamics of zonal flow energy with RMPs, e.g., we use the
approximation

bq ! 0: (65)

With this approximation, the system (59) and (60) reduces to

d

dt
dnq þ lTq

2q2sdnq # ldBq
2q2s ðd/q # dnqÞ ¼ 0; (66)

d

dt
d/q þ ld/q # aqðd/q # ð1# cÞdnqÞ

þ ldBðd/q # dnqÞ ¼ 0; (67)

where the quantity lT is given by

lT ¼ DT

q2s cZF
; (68)

and ldB is given by expression (35).
Without RMPs, e.g., ldB ! 0, we see from Eqs. (66)

and (67) that zonal density and zonal potential decouple and
their growth rate is, respectively

cq
# ! #lTq

2q2s ; for ldB ! 0; (69)

cq
þ ! aq # l; for ldB ! 0: (70)

Hence, without RMPs, drift waves destabilize only the zonal
potential, and zonal density is damped, so we recover stand-
ard zonal flow dynamics. This explains the predominance of
zonal flows in absence of RMPs. The dynamics is more com-
plex, in the presence of RMPs, as will be shown in Sec. II C.

C. Growth-rate of the zonal modes

The growth-rates of the zonal modes, as described by
Eqs. (66) and (67), are given bsy

cq
6 ¼ 1

2
ðaq # ðlþ ldBÞ # q2q2s ðlT þ ldBÞÞ6

ffiffiffiffi
D

p

2
; (71)

where the discriminant D can be cast into the following
form:

D ¼ðaq # ðlþ ldBÞ þ q2q2s ðlT þ ldBÞÞ
2

# 4q2q2s ðð1# cÞaq # ldBÞldB: (72)

1. Weak-coupling limit

The weak-coupling limit is defined as

jldB # aqj
l

) 1; (73)

because then the second term, i.e., coupling term, in the dis-
criminant (72) is negligible compared to the first term. In the
weak-coupling limit, expression (71) has different limiting
expression, depending on the sign of aq þ q2q2slT # l
#ð1# q2q2s Þl.

For aq þ q2q2slT # l# 1# q2q2s
+ ,

ldB < 0;

cq
þ ! #q2q2s ðlT þ ldBÞ þ

ðldB # ð1# cÞaqÞr
l2

q2q2sl; (74)

cq
# ! # 1þ ldB

l

$ %
lþ aq #

ðldB # ð1# cÞaqÞr
l2

q2q2sl:

(75)
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For aq þ q2q2slT # l# 1# q2q2s
+ ,

ldB > 0aq þ q2q2slT # l
# 1# q2q2s
+ ,

ldB > 0;

cq
þ ! aq # 1þ ldB

l

$ %
lþ ðldB # ð1# cÞaqÞ2

l2
q2q2sl; (76)

cq
# ! #q2q2s ðlT þ ldBÞ #

ðldB # ð1# cÞaqÞ2

l2
q2q2sl: (77)

It is interesting to compare these quasi-linear expressions to
the linear expressions (38) and (39). The results for the first
case are very similar to the linear expressions, with an addi-
tional stabilizing effect #q2q2slT

+ ,
on the weakly-damped

mode, due to particle flux modulation and a destabilization
(aq) of the strongly damped mode due to Reynolds stress
modulation. The second case, however, is very different as
in this case, it is the weakly-damped mode (the one with cþq )
that is destabilized by Reynolds stress modulation, and the
strongly-damped mode (the one with c#q ) is further stabilized
by particle flux modulation. Note, however, that since we
consider a modulational instability, what matters is the spec-
trally-integrated growth rate, i.e., we need to sum over the
wavenumbers q, Upon summation, the interplay between the
dissipation rates and the turbulence intensity ukj j2 “hidden”
in the terms aq and lT solely determines the stability of the
zonal modes.

III. ZONAL MODES—DRIFT WAVES PREDATOR-PREY
MODEL

We now consider the non-linear dynamics of the interac-
tion between the drift waves and the zonal modes.

A. Dynamics of zonal modes

In order to derive a predator-prey model, we only need
two fields: turbulence /k and zonal potential d/q, i.e., zonal
flows, and we must close the dynamical feedback loop
between primary drift waves and secondary zonal flows.

It would be desirable to solve numerically the set of three
equations for the amplitude of turbulence /k, zonal flows d/q,
and zonal density dnq, which could have chaotic states, but
this is outside the scope of this paper, and left for future work.
For simplicity, we consider the following ordering

ldB; lT * 1; (78)

which means basically that the zonal density dynamics is
slaved to the zonal potential dynamics. The zonal density
response to zonal potential, obtained using Eq. (66) in the
limit given by Eq. (78), is non-adiabatic

dnq ¼
ldB

lT þ ldB
d/q: (79)

Replacing dnq by expression (79), in the vorticity equation
(67), we obtain

d

dt
d/q ¼aq 1# ð1# cÞ ldB

lT þ ldB

$ %
d/q

# ldB 1# ldB
lT þ ldB

$ %
d/q # ld/q: (80)

Multiplying Eq. (80) by du(
q and combining with the com-

plex conjugate of Eq. (80) multiplied by d/q, we obtain an
equation describing the dynamics of zonal potential intensity

djd/qj
2

dt
¼aq 1# ð1# cÞ ldB

lT þ ldB

$ %
jd/qj

2

# ldB 1# ldB
lT þ ldB

$ %
jd/qj

2 # ljd/qj
2: (81)

Integrating Eq. (81) over the radial wavenumber kx, multi-
plying by q2, and summing over q, we obtain an equation for
the dynamics of zonal flow energy E ¼

P
q q

2jd/qj
2

dE

dt
¼ a"E# lE# lTldB

lT þ ldB
ðð1# a0Þaþ 1ÞE: (82)

B. Dynamics of turbulence energy

Due to wave action density conservation, the time varia-
tion of turbulence energy is linked to the correlation between
turbulence energy and flow shear14

d"

dt
¼ #

X

k

vgkyh dv0E.B þ ð1# cÞdv0(eð Þ ~Ni: (83)

Hence, we write the evolution of turbulence energy as

d"

dt
¼ c"#

ðþ1

#1

X

k

vgkyhðdv0E.B þ ð1# cÞdv0(eÞ~"idkx # b"2:

(84)

The first term on the r.h.s of Eq. (84) models linear-drive.
The second term comes form the k-space flux in the quasi-
linear wave kinetic equation. It represents the effect of
shearing, and the resulting refractive modulation of the drift
wave spectrum, by the zonal E.B and electron diamag-
netic flows. The last term accounts for non-linear damping,
i.e., drift wave self-interaction. The second term on the
r.h.s. of Eq. (84) can be calculated using the wave kinetic
equation

h dv0E.Bþð1# cÞdv0(eð Þ ~Ni¼ky
X

q

q2 d/q

00

#ð1# cÞdnq
002Rq

@hNi
@kx

: (85)

After some algebra, Eqs. (84) and (85) give the prey
equation

d"

dt
¼ c"# 1# ð1# a0Þ ldB

lT þ ldB

$ %2

a"E# b"2; (86)

with the following parameters

a ¼
X

q

X

k

q2sac
ky

2

ð1þ k2?q2s Þ
2
; (87)

a0 ¼
X

k

k2?q
2
s

1þ k2?q2s
: (88)
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C. Predator-prey model

We now assume that the parameter lT, proportional to
the turbulent diffusivity DT, takes the following form

lT ! " (89)

This is valid in the adiabatic electron limit for the primary
drift waves. Using assumption (89), the set of Eqs. (82) and
(86) yield the following predator-prey model

d"

dt
¼ c"# aeff1 ð"Þ # b"2; (90)

dE

dt
¼ aeff2 ð"Þ # lE; (91)

where we define effective nonlinear coupling parameters

aeff1 ð"Þ ¼ a ð1# a0Þ ldB
"þ ldB

# 1

$ %2

; (92)

aeff2 ð"Þ ¼ a# ldB
"þ ldB

ðð1# a0Þaþ 1Þ: (93)

The effective nonlinear coupling parameters are plotted vs.
turbulence energy, for different values of the (normalized)
RMP coupling parameter ldB

"L
[Fig. 2]. Without RMPs

(ldB¼ 0), the two nonlinear coupling parameters coalesce
into the parameter a of the standard predator-prey model,
which ensures energy conservation between primary drift
waves and secondary zonal flows.15 With RMPs, energy is
not conserved due to the external magnetic energy from the
RMP-producing coils. This is due to the intrinsically dissipa-
tive nature of the linear RMP coupling. The dissipative char-
acter of the nonlinearities arises form the slaving of the
zonal density to the zonal potential. Close to the RMP
Hmode threshold "

"L
¼ 1, the two coupling parameters are

nearly equal, but they differ strongly far form threshold, i.e.,
for "

"L
) 1. Note that the aeff2 "ð Þ nonlinear coupling parameter

is linked to the functional response F of predator-prey

FIG. 2. Effective nonlinear coupling parameters vs. normalized turbulence energy "
"L
, for different values of the RMP coupling parameter: (a)

aeff
1

a and (b)
aeff
2

a .
The parameters are a¼ 1, b¼ 0.1, c¼ 1, l¼ 2, and a0 ¼ 0.

FIG. 3. (Color online) Dynamics of the model without RMPs ldB
l ¼ 0

1 2
: turbulence energy " (solid line), and energies EZP, EZD associated to zonal flows

(dashed line) and zonal density (dash-dotted line), for the two possible non-trivial states: (a) L mode-like state and (b) H mode like state. The parameters are
the same as in Fig. 2.
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models in ecology, i.e., F ¼ aeff2 "ð Þ".16,17 More precisely, our
model is characterized by a weakly nonlinear functional
response, since the functional response derivative is

dF

d"
¼ a 1# ð1# a0Þaþ 1

a
ldB

"þ ldB

$ %
! a ¼ Cst: (94)

Moreover, in this model, the zonal density energy, obtained
using expression (79), is a function of zonal flow energy and
turbulence energy. i.e.,

EZD ¼
l2dB

ð"þ ldBÞ
2
E: (95)

D. Results of the predator-prey model

The evolution and dynamics of the zonal modes—drift
waves (ZM-DW) predator-prey model described by Eqs.
(90) and (91), together with Eq. (95), are shown for different
values of the RMP coupling parameter ldB

"L
[Figs. 4(a)–4(d)].

In the case of no RMPs, and zero initial zonal flow
energy, an Lmode-like steady-state regime is reached,
corresponding to no zonal flow and a high turbulence level
[Fig. 3(a)]. In the case of no RMPs, but with a small initial

seed zonal flow, an H mode-like steady-state regime is
reached, corresponding to the coexistence of ambient turbu-
lence and zonal flows [Fig. 3(b)]. Accessing this state

requires that the condition c > b
a l, be satisfied. As, c ! rp,

this is similar to a power threshold condition.
In the case with RMPs, a novel bifurcation occurs when

the RMPs are turned on, e.g., above a critical coupling pa-

rameter
lc1dB
"L

¼ 0, after a transient period, a new steady-state is

reached, where the level of both ambient turbulence and
zonal flows increase with ldB

"L
[Figs. 4(b) and 4(c)]. However,

above a critical value
lc2dB
"L

of the RMP coupling parameter, a

second bifurcation occurs: the energy of the ambient turbu-
lence further increases with ldB

"L
, but the energy of the zonal

flows now decreases with ldB
"L
. The dynamics is shown for

ldB
l ¼ 0:8 [Fig. 4(d)]. The intermediate regime where the

level of both ambient turbulence and zonal flows increases
with ldB

"L
only appears below a certain value of the collisional

drag l. This unintuitive behavior may be linked to our reduc-
tion of the initial three-field problem (/k, d/q, and dnq), to a
two-field problem (/k and d/q), i.e., to the slaving of the
zonal density dynamics to that of zonal potential. The

FIG. 4. (Color online) Dynamics of the zonal modes—drift waves predator-prey model: turbulence energy (solid line), and energies EZP, EZD associated to zonal
flows (dashed line) and zonal density (dash-dotted line) before and during an RMP pulse applied at t¼ 60, for different values of the normalized coupling param-
eter ldB

"L
: (a) for ldB

"L
¼ 0:01, (b) for ldB

"L
¼ 0:2, (c) for ldB

"L
¼ 0:4, and (d) for ldB

"L
¼ 0:8. The values of the parameters are: a¼ 1, b¼ 0.1, c¼ 1, l¼ 2, and a0 ¼ 0.
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dynamics of the full three-field problem is expected to have
a wider set of possible states, including possible chaotic
states. While the precise value of the critical coupling param-

eter
lc2dB
"L

for the decay of zonal flows is difficult to predict, we

estimate it numerically, for the parameters of Fig. (2), as:
lc2dB
"L

’ 0:14.

For a higher critical value
lc3dB
"L

of the coupling parameter, a
third bifurcation occurs at which the system reverts back to
the Lmode-like state, characterized by no zonal flows and a
high turbulence level. The critical coupling parameter can be
evaluated using the fact that, at that bifurcation threshold, the
energy of ambient turbulence reaches its maximum "Lð Þ, e.g.,
"ðl; lc3dBÞ ¼ "L ¼ c

b. For the parameters of Fig. 2, this yields
lc3dB
"L

¼ 2
3. A summary of states is given [Table II]. Possible tran-

sitions between states are indicated schematically [Fig. 5].

E. Analysis of steady-state solutions

In order to understand RMP effects as predicted by the
predator-prey model [Figs. 4(a)–4(d)], we study the steady-
state solutions (i.e., fixed points) of the model. These are
given by

c"# aeff1 ð"; ldBÞ # b"2 ¼ 0; (96)

aeff2 ð"; ldBÞ # lE ¼ 0; (97)

together with Eq. (95).
The first non-trivial solution of Eqs. (97) and (96) is an

Lmode-like, no-flow state

"
E

$ %
¼ "L

0

$ %
; (98)

with given by

"L ¼ c
b
: (99)

The second non-trivial solution is a flow-dominated state,
which we dub H* (RMP Hmode), given by

aeff2 ð"H(Þ"H( # l ¼ 0; (100)

EH( ¼ b
"L # "H(

aeff1 ð"H(Þ
: (101)

Note that, in order for EH* to remain positive and finite,
expression (101) sets a constraint on the aeff1 coupling param-
eter and a constraint on "H(, namely: and "H( < "L. Simi-
larly, since "H( / 0 and l / 0, expression (100) sets a
constraint on the aeff2 coupling parameter, namely: aeff2 / 0.

Equation (101) yields a quadratic equation with two sol-
utions. However, one of them is negative and hence, not
physical since kinetic energy is always positive. The unphys-
ical solution is, therefore, discarded.

The energy of the physical solution, in normalized form,
reads

"H(

"L
¼ 1

2a
1# a0að Þ ldB

"L
þ "H

"L

- .

þ 1

2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1# a0að Þ ldB
"L

þ "H
"L

- .2
þ 4

ldB
"L

"H
"L

s

: (102)

The associated energy of the zonal flows is given by

EH(

"L
¼ ð1# a0Þ

ldB
"L

"H(
"L

þ ldB
"L

# 1

0

B@

1

CA

#2

b
a

1# "H(

"L

$ %
: (103)

Without RMPs, e.g., ldB¼ 0, we recover the Hmode-like
state of the standard ZF-DW predator-prey model

"H(
EH(

$ %
¼ "H

EH

$ %
; for ldB ¼ 0; (104)

with the turbulence energy "H and zonal flow energy EH

given by

"H
"L

¼ l
a"L

; (105)

EH

"L
¼ b

a
1# "H

"L

$ %
: (106)

At fixed collisionality, i.e., l¼l(!*) constant, the zonal flow
energy and associated ambient turbulence energy have a

nonlinear dependence on the RMP coupling parameter ldB
"L

[Fig. 6]. In particular, zonal flow energy is maximal for a

critical value of the RMP coupling parameter ldB
"L

>
lc2dB
"L
. The

critical RMP coupling parameter
lc2dB
"L

can be calculated by

considering that, at the bifurcation, the following condition

is satisfied:

TABLE II. Possible regimes for the predator-prey model Eqs. (90) and

(91). The critical parameters are:
lc2dB
"L

’ 0:14 and
lc3dB
"L

¼ 2
3, for the parameters

of Fig. 2.

Without RMPs H ldB¼ 0 "HEZF > 0

Both L ldB¼ 0 or ldB / lc3dB "LEZF ¼ 0

With RMPs H* lc2dB + ldB < lc3dB e? % EZF &
H* 0 < ldB < lc2dB e? % EZF %

FIG. 5. Transition between states of the predator-prey model Eqs. (90)
and (91).
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@EH(

@ldB
jlc2dB ¼ 0: (107)

This expression is most easily evaluated numerically. For the

parameters of Fig. 7, its value is approximately
lc2dB
"L

’ 0:14.
In the strong-RMP limit ldB

"L
* "H

"L
, expression (103)

reduces to

"H(
"L

! 1

a
# a0

$ %
ldB
"L

þ ðaþ 1Þ "H
"L

: (108)

However, as is clear from the numerical results [Figs. 4(a)–

4(d)], this expression is only valid below a critical value
lc3dB
"L

of the coupling parameter, which we will see, corresponds to

a power threshold. Physically, the H* mode can only be

accessed for "H(
"L

< 1, i.e., c > cc ¼ b"H( which is equivalent

to a power threshold. Interestingly, in the H* mode, the

power threshold is a function of the RMP coupling parame-

ter: cc =cc(ldB). The dependence of the power threshold on

ldB, expressed in normalized form Dcc
c0c
, is shown for different

values of the collisional drag l [Fig. 8]. Hence, the critical

parameter
lc3dB
"L

is given by the following equation:

aeff2 ð"L; lc3dBÞ"L # l ¼ 0: (109)

The critical parameter
lc3dB
"L

reads

lc3dB
"L

¼
a# l

"L

1þ l
"L

: (110)

The energy of zonal flows E and the associated turbulence
energy " of the RMP Hmode are plotted as a function of the

parameters !(

"L
and ldB

"L
, for a value a¼ 1 of the a parameter

[Fig. 7]. Both energies are normalized to the ambient turbu-
lence energy of the Lmode-like state "L ¼ c=b.

IV. DISCUSSION AND CONCLUSIONS

The results of the analysis of the drift wave—zonal
mode predator-prey model, derived from a generalization of
the Hasegawa-Wakatani equations to include RMPs,
recover the damping of zonal flows observed in experi-
ments.8 We identify a new state, which we call the RMP
Hmode (H*). Without RMPs, the possible states of the sys-
tem are an Lmode-like state with no zonal flows and high
turbulence and an Hmode-like state (accessible above a
power threshold) with zonal flows and a low turbulence
level. With RMPs, the possible states are the Lmode-like
state and the novel H* mode (accessible above an RMP am-
plitude-dependent power threshold) with either enhanced or
damped zonal flows, depending on RMP amplitude, and a
low turbulence level. The H* mode is similar to the
Hmode-like state of the standard predator-prey model, but
characterized by a nonlinear dependence of the power
threshold on the RMP coupling parameter ldB. More pre-
cisely, the RMP Hmode threshold increases with

ldB ! dBr
B

+ ,2
. Note, however, that to obtain this scaling, we

FIG. 6. Zonal flow energy and ambient turbulence energy vs. the normal-
ized RMP coupling parameter. Parameters are the same as in Fig. 4.

FIG. 7. (Color online) Steady-state solutions of the ZM-DW predator prey model. (a) energy of zonal flows E
"L
vs. normalized turbulence energy "

"L
for different

values of the normalized RMP coupling parameter ldB
"L

and (b) associated normalized turbulence energy "
"L
vs. normalized coupling parameter ldB

"L
and normalized

collisionality !(

"L
. Here, the value of the parameter a is a¼ 1.
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assumed that the particle turbulent diffusivity is independ-

ent of the linear drive c. If, instead, we take the particle tur-
bulent diffusivity to be proportional to linear drive, e.g.,
DT ! cq2s ", this yields a timescale for the particle turbulent
diffusion process and hence, for the zonal density damping,
namely c#1. Moreover, with this relation, the turbulence
level of the RMP Hmode now depends explicitely on the
linear drive c, and a simple calculation shows that the RMP
power threshold is now determined by a cubic equation

with a dBr
B

+ ,2
scaling in the weak-RMP limit, but a dBr

B

+ ,2=3

scaling in the strong-RMP limit. An increase of the H-mode
power threshold with RMP strength has been observed in
recent experiments.5 Moreover, we find that the RMP
Hmode threshold is very sensitive to collisionality !*. This
may be related to the observation that RMPs are more effi-
cient at mitigating ELMs for low collisionality.2,5 However,
experiments show that the resonant character of RMPs, e.g.,
even or odd parity of the coils, determines at which colli-
sionality RMPs are effective.5 Since our model does not
distinguish between RMPs that are in even or odd parity,
we cannot address this issue here. We stress in our model
that damping and=or suppression of zonal flows is found
only for certain regions of parameter space, e.g., for the
strong coupling limit ldB

"L
>>

lc2dB
"L
, which corresponds to the

strong-RMP limit. In the weak-coupling limit ldB
"L

<<
lc2dB
"L
, our

predator-prey model suggests that zonal flows are instead
enhanced by the RMPs. We stress, though, that fluctuation
levels are predicted to increase for RMP switch-on in both
the weak and strong RMP regimes.

V. CONCLUSION

In this work, we studied the effects of RMPs on zonal
flows and associated zonal density modulations, using an
extended Hasegawa-Wakatani model. In physical terms,
RMPs enable the radial diffusion of electrons parallel to per-
turbed magnetic surfaces, but perpendicular to unperturbed
ones, a process known as magnetic flutter. This process can
compete with the cross-field transport of polarization charge

which is the agent of guiding-center ambipolarity breaking
responsible for zonal flow formation. This simple model
shows that, in presence of RMPs, the usual drift-wave zonal-
flow paradigm is no longer strictly valid. With RMPs, the
zonal potential (i.e., secondary zonal flows), in addition to
being indirectly (i.e., nonlinearly) coupled to primary drift
waves, are also directly (i.e., linearly) coupled to secondary
zonal density perturbations. The main resulting effect is that,
through this direct linear coupling, the zonal flows are
damped by the turbulent particle diffusivity.

In order to quantify the damping of zonal flows, we
derived a predator-prey model based on the extended Hase-
gawa-Wakatani model, where we approximated that the
zonal density is slaved to the zonal potential, and we also
considered the evolution of primary drift wave energy, in
order to close the feedback-loop. The dynamics of this pred-
ator-prey model exhibits a rich variety of behaviour, depend-
ing on the value of the control parameter ldB, where

ldB ¼ Dk
q2s cZF

dBr
B

! "2
. For ldB¼ 0, the system is bistable, being

either in a Lmode-like regime, characterized by no zonal
flow EL¼ 0 and a high turbulence level , or in a Hmode-like
regime, characterized by a finite level of zonal flows EH> 0,
and a low turbulence level "H < "L. The Hmode-like regime
is accessible only above a critical value c> cc of the linear
drive, i.e., above a power threshold.

For ldB> 0, the system bifurcates to a new regime,
which we call the RMP Hmode (H*). This regime bears
some similarity with the Hmode-like regime, but has two
major differences: (i) the threshold increases with the control
parameter ldB, e.g., cc¼ cc(ldB) and (ii) the zonal flow
energy can increase or decrease with the control parameter
ldB, depending on the value of ldB. For lc1dB < ldB < lc2dB,
both the zonal flow energy and ambient turbulence energy
increase with ldB. Here, denotes the threshold for the onset
of the H* regime, and lc2dB ¼ lc2dB !(ð Þ is a function of colli-
sionality !*. For lc2dB + ldB < lc3dB, the zonal flow energy
decreases with ldB while the turbulence energy keeps
increasing. The threshold lc3dB ¼ lc3dB !(ð Þ depends on colli-
sionality. In order to test these predictions, future experi-
ments of the form of Ref. 18 would be of a great interest.

ACKNOWLEDGMENTS

The authors would like to thank Y. Xu, G. Dif-Pradalier,
P. Beyer, G. McKee, K. Ida, and P. Manz for useful discus-
sions. This work was supported by the World Class Institute
(WCI) Program of the National Research Foundation of
Korea (NRF) funded by the Ministry of Education, Science
and Technology of Korea (MEST).

APPENDIX: ANALYSIS OF NEW STEADY-STATE AND
INTERMEDIATE CALCULATIONS

1. Stability analysis of the RMP Hmode

In order to simplify the stability analysis of the RMP
Hmode state H*, we consider the limit a0 ¼ 0. In this case,
the predator-prey equations read

FIG. 8. RMPs increase the power threshold: relative variation of power
threshold Dcc

c0c
vs. RMP coupling parameter ldB, for different values of the

collisional drag l.
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d"

dt
¼ c"# b"2 # âeff1 ð"Þ; (A1)

dE

dt
¼ âeff2 ð"Þ # lE; (A2)

with the coupling parameters, for a0 ¼ 0, given by

âeff1 ð"Þ ¼ "2

ð"þ ldBÞ
2
a; (A3)

âeff2 ð"Þ ¼
"# 1

a
ldB

"þ ldB
a: (A4)

The Jacobian matrix is

Jð";EÞ¼
c#2b"# d ln âeff1

d" þ1

- .
âeff1 ð"ÞE #âeff1 ð"Þ"

d ln âeff2
d"

þ1

" #

âeff2 ð"ÞE âeff2 ð"Þ"#l

0

BBB@

1

CCCA;

(A5)

where the logarithmic derivatives are

d ln âeff1
d"

¼ 2ldB
"þ ldB

; (A6)

d ln âeff2
d"

¼ aþ 1

a
ldB"

ð"þ ldBÞð"# ldB=aÞ
: (A7)

In the weak-RMP limit, ldB
" ) 1, keeping only terms first-

order in ldB
" , the coupling parameters and their logarithmic

derivatives reduce to

âeff1 ð"Þ ! 1# 2
ldB
"

1 2
a; (A8)

d ln âeff1
d"

! 2
ldB
";

(A9)

âeff2 ð"Þ ! 1# aþ 1

a
ldB
"

$ %
a; (A10)

d ln âeff2
d"

¼ aþ 1

a
ldB
"

: (A11)

Using these approximations, the Jacobian (A6) reduces to

Jð";EÞ !
c# 2b"# aE # 1# 2

ldB
"

1 2
a"

aE 1# aþ 1

a
ldB
"

$ %
a"# l

0

BB@

1

CCA:

(A12)

This is equivalent to

Jð";EÞ ! c# 2b"# aE #a"þ 2aldB
aE a"# ðaþ 1ÞldB # l

$ %
: (A13)

Now we consider the steady-state H*. In the weak-RMP
limit it is given by

"( !
l
2a

1þ ldB
l

$ %
þ l
2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2
ldB
l

$ %
þ 4a

ldB
l

s

! 1þ ðaþ 1Þ ldB
l

$ %
l
a
; (A14)

EH( !
c# b"(

a
: (A15)

Plugging these expressions in (A13), we get

Jð"(;EH(Þ

!
# 1þðaþ 1ÞldB

l

$ %
bl
a

# 1#ða# 1ÞldB
l

$ %
l

c# 1þðaþ 1ÞldB
l

$ %
bl
a

0

0

BBB@

1

CCCA:

(A16)

The eigenvalues k of the Jacobian matrix (A16) are given by

k2 þ 1þ ðaþ 1ÞldB
l

$ %
bl
a
k

þ 1# ða# 1Þ ldB
l

$ %
c# 1þ ðaþ 1ÞldB

l

$ %
bl
a

- .
l:

(A17)

The discriminant of Eq. (A17) is

D ¼ 1þ ðaþ 1Þ ldB
l

$ %2 b2l2

a2

# 4 1# ða# 1ÞldB
l

$ %
c# 1þ ðaþ 1Þ ldB

l

$ %
bl
a

- .
l:

(A18)

Since the H* mode is accessible only above a threshold
c > bl

a , the discriminant (A18) is strictly negative: D< 0, and
the eigenvalues are hence complex. The eigenvalues are thus

k ¼ r6ix; (A19)

with

r ¼ # 1þ ðaþ 1ÞldB
l

$ %
bl
2a

< 0; (A20)

x ¼ 1

2

ffiffiffiffiffiffi
jDj

p
: (A21)

Since Rek¼ r< 0, the H* mode is thus a hyperbolic, attrac-
tor fixed-point. Moreover, Eq. (A18) yields the threshold of
the H* mode, in the weak-RMP limit, namely

cH(c ðldBÞ ! cHc þ bðaþ 1Þ
a

ldB for
ldB
l

) 1; (A22)

where cHc ¼ bl
a denotes the H -mode threshold.

2. Derivation of Eqs. (12) and (13)

The surface average of the first term on the r.h.s. of
Eqs. (9) and (10) vanishes, and we get
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@

@t
hni þ @

@x
h~vx~ni ¼ Dk ~Bx

@

@x
ðikk0ð~n# ~/ÞÞ

) *

þ Dk ~Bx
@

@x
~Bx

@

@x
ðn# /Þ

$ %) *
; (A23)

q2s
@

@t
r2

?h/i þ lq2sr
2
?h/i þ q2s

@

@x
h~vxr2

?
~/i

¼ Dkh ~Bx
@

@x
ðikk0ð~n# ~/ÞÞi þDkh ~Bx

@

@x
ð ~Bx

@

@x
ðn#/ÞÞi;

(A24)

where ~Bx ¼ #iky ~w (normalized to B0) is the magnetic field
radial perturbation.

Replacing ~Bx by its expression, we have

@

@t
hniþ @

@x
h~vx~ni ¼#Dk ky

2 ~w
@

@x

x# xky
Ls

ð~n# ~/Þ
$ %) *

þDk ky
2 ~w

@

@x
~w
@

@x
ðn#/Þ

$ %) *
; (A25)

q2s
@

@t
r2

?h/i þ lq2sr
2
?h/i þ q2s

@

@x
h~vxr2

?
~/i

¼ #Dk ky
2 ~w

@

@x

x# xky
Ls

ð~n# ~/Þ
$ %) *

þ Dk ky
2 ~w

@

@x
~w
@

@x
ðn# /Þ

$ %) *
: (A26)

3. Derivation of Eqs. (59) and (60)

The evolution of potential enstrophy density reads

d

dt
dXþ iqvgdXþ jckjdX

¼ kyq
2 dnq

1þ k2?q2s
# d/q

$ %
@

@kx
hXi: (A27)

Since we consider zero-frequency modulations (d(dX)=
dt¼ 0), this yields

dX ¼
q2ky

iqvg þ jckj
d/q #

dnq
1þ k2?q2s

$ %
@

@kx
hXi: (A28)

4. Simplification of the discriminant of Eq. (71)

The discriminant D in Eq. (71) has the form

D ¼ ðaq # ðlþ ldBÞ # q2q2s ðlT þ ldBÞÞ
2; (A29)

þ 4q2q2s ½ðaq # ðlþ ldBÞÞlT # ldBðl# caqÞ-: (A30)

Rearranging terms, we get

D ¼ ðaq # ðlþ ldBÞ # q2q2s ðlT þ ldBÞÞ
2

þ 4q2q2s ½ðaq # ðlþ ldBÞÞðlT þ ldBÞ
# ldBðl# caqÞ- # 4q2q2s ðaq # ðlþ ldBÞÞldB; (A31)

and we obtain expression (72) given in the main text.
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